Weiter zum Inhalt
Bibliothekskatalog
  • Temporäre Merkliste: 0 temporär gemerkt (Ihre Merkliste ist voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Erklärvideos
  • Weitere Angebote
    • Anschaffungswunsch
    • Semesterapparat
    • Suchhistorie
    • Fernleihe
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren / Gebühren
    • Persönliche Angaben
    • Suchhistorie
  • Log out
  • Login
  • Medien
  • Aufsätze
Erweitert
  • Suche
  • Applied asymptotic methods in...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach Citavi
  • dauerhaft merken
  • temporär merken Aus der Merkliste entfernen
  • Permalink
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Titel:Applied asymptotic methods in nonlinear oscillations
Von: by Yu. A. Mitropolskii and Nguyen Van Dao
Person: Mitropolʹskij, Jurij Alekseevič
1917-2008
Verfasser
aut
Nguyen Van Dao
Hauptverfassende: Mitropolʹskij, Jurij Alekseevič 1917-2008 (VerfasserIn), Nguyen Van Dao (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Dordrecht [u.a.] Kluwer Acad. 1997
Schriftenreihe:Solid mechanics and its applications 55
Schlagworte:
Differentiable dynamical systems
Differential equations, Nonlinear > Asymptotic theory
Nonlinear oscillations
Nichtlineare Schwingung
Asymptotische Methode
Online-Zugang:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008076685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Beschreibung:X, 341 S. graph. Darst.
ISBN:079234605X
Internformat

MARC

LEADER 00000nam a2200000 cb4500
001 BV011946795
003 DE-604
005 19980518
007 t|
008 980515s1997 xx d||| |||| 00||| eng d
020 |a 079234605X  |9 0-7923-4605-X 
035 |a (OCoLC)36857066 
035 |a (DE-599)BVBBV011946795 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703 
050 0 |a QA867.5 
082 0 |a 531/.32/01515355  |2 21 
084 |a UF 5100  |0 (DE-625)145596:  |2 rvk 
100 1 |a Mitropolʹskij, Jurij Alekseevič  |d 1917-2008  |e Verfasser  |0 (DE-588)104890029  |4 aut 
245 1 0 |a Applied asymptotic methods in nonlinear oscillations  |c by Yu. A. Mitropolskii and Nguyen Van Dao 
264 1 |a Dordrecht [u.a.]  |b Kluwer Acad.  |c 1997 
300 |a X, 341 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Solid mechanics and its applications  |v 55 
650 4 |a Differentiable dynamical systems 
650 4 |a Differential equations, Nonlinear  |x Asymptotic theory 
650 4 |a Nonlinear oscillations 
650 0 7 |a Nichtlineare Schwingung  |0 (DE-588)4042100-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Asymptotische Methode  |0 (DE-588)4287476-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare Schwingung  |0 (DE-588)4042100-4  |D s 
689 0 1 |a Asymptotische Methode  |0 (DE-588)4287476-2  |D s 
689 0 |5 DE-604 
700 0 |a Nguyen Van Dao  |e Verfasser  |4 aut 
830 0 |a Solid mechanics and its applications  |v 55  |w (DE-604)BV004342211  |9 55 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008076685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008076685 

Datensatz im Suchindex

_version_ 1819355959211851776
adam_text CONTENTS Preface ix Chapter 1. Free Oscillations of Quasi linear Systems 1 1. Free oscillations of systems governed by a general second order diffe¬ rential equation 1 2. Conservative systems 10 3. Dissipative systems 17 4. Stationary amplitudes and their stability 20 5. Equivalent linearization of nonlinear oscillatory systems 22 6. Nonlinear oscillatory systems with slowly varying parameters. Adia batic invariants. 25 7. Free oscillations of systems governed by a third order differential equa¬ tion 41 8. Free oscillations of systems governed by TV order differential equation 49 Chapter 2. Self excited Oscillations 58 1. Lienard and Routh Hurwitz criteria. Stability of equilibrium states 58 2. Self excited oscillations of a mechanical system 72 3. Dynamic absorber for quenching self excited oscillations of the mecha¬ nical systems having one degree of freedom 75 4. Dynamic absorber for quenching self excited oscillations of systems having two degrees of freedom 85 5. Self excited oscillation of a system with N degrees of freedom 90 6. Dynamic absorber for a beam undergoing self excited oscillation 94 7. Absorber for self excited oscillations of a plate 100 Chapter 3. Forced Oscillations 107 1. Statement of the problem 107 2. Nonresonance case 109 3. Resonance case 118 4. External harmonic excitation of a nonlinear oscillator. Duffing s equation. Jump phenomenon 129 5. Subharmonic oscillations 137 6. Nonstationary oscillations 145 7. Multi frequency oscillations in systems with one degree of freedom 156 8. Forced oscillation of systems governed by TV order differential equation 164 9. Single frequency oscillations in nonlinear systems with multiple degrees of freedom 178 10. Multi frequency oscillations in nonlinear systems with multiple degrees of freedom 180 Chapter 4. Parametrically excited Oscillations 196 1. Some examples of parametrically excited oscillators 196 2. Behaviour of oscillators governed by a Mathieu equation 199 3. Oscillators governed by a nonlinear Mathieu equation 206 4. Some generalized Mathieu equations 211 5. Parametric oscillations of mechanical systems with hysteresis 226 viii 6. Indirectly excited parametric oscillations 234 7. Parametrically excited oscillations in an electromechanical system 239 Chapter 5. Interaction of Nonlinear Oscillations 245 1. Forced oscillations of systems with self excitation. Synchronization effect 245 2. Interaction between self excited and parametric oscillations 254 3. Generalized Van Der Pol equation 257 4. Interaction of subharmonic oscillations 263 5. Interaction between parametric and forced oscillations in multidimen¬ sional systems 272 Chapter 6. Averaging Method 282 1. The idea of averaging by Bogoliubov 283 2. Averaging differential equations with slowly varying parameters 291 3. Averaging in systems excited by impulsive forces 293 4. Conditions for uniformity in the averaging method 297 5. Averaging in systems containing slow and rapid motions 300 6. Averaging in systems containing rotation. Motion of satellites 303 7. Modified averaging methods 319 8. Averaging method and stability of motion in the critical case 322 Appendix 1. Principal Coordinates 327 Appendix 2. Some Trigonometric Formulae Often Used in the Averaging Method 331 References 332 Index 336
any_adam_object 1
author Mitropolʹskij, Jurij Alekseevič 1917-2008
Nguyen Van Dao
author_GND (DE-588)104890029
author_facet Mitropolʹskij, Jurij Alekseevič 1917-2008
Nguyen Van Dao
author_role aut
aut
author_sort Mitropolʹskij, Jurij Alekseevič 1917-2008
author_variant j a m ja jam
n v d nvd
building Verbundindex
bvnumber BV011946795
callnumber-first Q - Science
callnumber-label QA867
callnumber-raw QA867.5
callnumber-search QA867.5
callnumber-sort QA 3867.5
callnumber-subject QA - Mathematics
classification_rvk UF 5100
ctrlnum (OCoLC)36857066
(DE-599)BVBBV011946795
dewey-full 531/.32/01515355
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531/.32/01515355
dewey-search 531/.32/01515355
dewey-sort 3531 232 71515355
dewey-tens 530 - Physics
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01790nam a2200433 cb4500</leader><controlfield tag="001">BV011946795</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980518 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980515s1997 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">079234605X</subfield><subfield code="9">0-7923-4605-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36857066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011946795</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA867.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.32/01515355</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5100</subfield><subfield code="0">(DE-625)145596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitropolʹskij, Jurij Alekseevič</subfield><subfield code="d">1917-2008</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)104890029</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied asymptotic methods in nonlinear oscillations</subfield><subfield code="c">by Yu. A. Mitropolskii and Nguyen Van Dao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad.</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 341 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Solid mechanics and its applications</subfield><subfield code="v">55</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear oscillations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nguyen Van Dao</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Solid mechanics and its applications</subfield><subfield code="v">55</subfield><subfield code="w">(DE-604)BV004342211</subfield><subfield code="9">55</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008076685&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008076685</subfield></datafield></record></collection>
id DE-604.BV011946795
illustrated Illustrated
indexdate 2024-12-20T10:21:31Z
institution BVB
isbn 079234605X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008076685
oclc_num 36857066
open_access_boolean
owner DE-703
owner_facet DE-703
physical X, 341 S. graph. Darst.
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Kluwer Acad.
record_format marc
series Solid mechanics and its applications
series2 Solid mechanics and its applications
spellingShingle Mitropolʹskij, Jurij Alekseevič 1917-2008
Nguyen Van Dao
Applied asymptotic methods in nonlinear oscillations
Solid mechanics and its applications
Differentiable dynamical systems
Differential equations, Nonlinear Asymptotic theory
Nonlinear oscillations
Nichtlineare Schwingung (DE-588)4042100-4 gnd
Asymptotische Methode (DE-588)4287476-2 gnd
subject_GND (DE-588)4042100-4
(DE-588)4287476-2
title Applied asymptotic methods in nonlinear oscillations
title_auth Applied asymptotic methods in nonlinear oscillations
title_exact_search Applied asymptotic methods in nonlinear oscillations
title_full Applied asymptotic methods in nonlinear oscillations by Yu. A. Mitropolskii and Nguyen Van Dao
title_fullStr Applied asymptotic methods in nonlinear oscillations by Yu. A. Mitropolskii and Nguyen Van Dao
title_full_unstemmed Applied asymptotic methods in nonlinear oscillations by Yu. A. Mitropolskii and Nguyen Van Dao
title_short Applied asymptotic methods in nonlinear oscillations
title_sort applied asymptotic methods in nonlinear oscillations
topic Differentiable dynamical systems
Differential equations, Nonlinear Asymptotic theory
Nonlinear oscillations
Nichtlineare Schwingung (DE-588)4042100-4 gnd
Asymptotische Methode (DE-588)4287476-2 gnd
topic_facet Differentiable dynamical systems
Differential equations, Nonlinear Asymptotic theory
Nonlinear oscillations
Nichtlineare Schwingung
Asymptotische Methode
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008076685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV004342211
work_keys_str_mv AT mitropolʹskijjurijalekseevic appliedasymptoticmethodsinnonlinearoscillations
AT nguyenvandao appliedasymptoticmethodsinnonlinearoscillations
  • Verfügbarkeit

‌

Per Fernleihe bestellen Per Fernleihe bestellen Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt