Weiter zum Inhalt
Bibliothekskatalog
  • Temporäre Merkliste: 0 temporär gemerkt (Ihre Merkliste ist voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Erklärvideos
  • Weitere Angebote
    • Anschaffungswunsch
    • Semesterapparat
    • Suchhistorie
    • Fernleihe
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren / Gebühren
    • Persönliche Angaben
    • Suchhistorie
  • Log out
  • Login
  • Medien
  • Aufsätze
Erweitert
  • Global affine differential geo...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach Citavi
  • dauerhaft merken
  • temporär merken Aus der Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Titel:Global affine differential geometry of hypersurfaces
Von: by An-Min Li ; Udo Simon ; Guosong Zhao
Person: Li, An-Min
1946-
Verfasser
aut
Simon, Udo
Zhao, Guosong
1938-
Hauptverfassende: Li, An-Min 1946- (VerfasserIn), Simon, Udo 1938- (VerfasserIn), Zhao, Guosong (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Berlin [u.a.] de Gruyter 1993
Schriftenreihe:De Gruyter expositions in mathematics 11
Schlagworte:
Géométrie différentielle globale
Hypersphère
Hypersurfaces
Inégalité géométrique
Problème variationnel
Rigidité
Global differential geometry
Hyperfläche
Globale Differentialgeometrie
Affine Differentialgeometrie
Online-Zugang:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005393842&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Beschreibung:XIII, 328 S.
ISBN:3110127695
Internformat

MARC

LEADER 00000nam a2200000 cb4500
001 BV008173749
003 DE-604
005 20150916
007 t|
008 930809s1993 gw |||| 00||| eng d
020 |a 3110127695  |9 3-11-012769-5 
035 |a (OCoLC)28550056 
035 |a (DE-599)BVBBV008173749 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-355  |a DE-91G  |a DE-824  |a DE-29T  |a DE-12  |a DE-20  |a DE-703  |a DE-384  |a DE-634  |a DE-83  |a DE-11  |a DE-188  |a DE-19 
050 0 |a QA670 
082 0 |a 516.3/62  |2 20 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a MAT 517f  |2 stub 
084 |a 53A15  |2 msc 
100 1 |a Li, An-Min  |d 1946-  |e Verfasser  |0 (DE-588)113507054  |4 aut 
245 1 0 |a Global affine differential geometry of hypersurfaces  |c by An-Min Li ; Udo Simon ; Guosong Zhao 
264 1 |a Berlin [u.a.]  |b de Gruyter  |c 1993 
300 |a XIII, 328 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics  |v 11 
650 7 |a Géométrie différentielle globale  |2 ram 
650 7 |a Hypersphère  |2 Jussieu 
650 7 |a Hypersurfaces  |2 ram 
650 7 |a Inégalité géométrique  |2 Jussieu 
650 7 |a Problème variationnel  |2 Jussieu 
650 7 |a Rigidité  |2 Jussieu 
650 4 |a Global differential geometry 
650 4 |a Hypersurfaces 
650 0 7 |a Hyperfläche  |0 (DE-588)4161054-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Globale Differentialgeometrie  |0 (DE-588)4021286-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Affine Differentialgeometrie  |0 (DE-588)4141563-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Globale Differentialgeometrie  |0 (DE-588)4021286-5  |D s 
689 0 1 |a Hyperfläche  |0 (DE-588)4161054-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Hyperfläche  |0 (DE-588)4161054-4  |D s 
689 1 1 |a Affine Differentialgeometrie  |0 (DE-588)4141563-2  |D s 
689 1 2 |a Globale Differentialgeometrie  |0 (DE-588)4021286-5  |D s 
689 1 |5 DE-604 
689 2 0 |a Globale Differentialgeometrie  |0 (DE-588)4021286-5  |D s 
689 2 |5 DE-604 
700 1 |a Simon, Udo  |d 1938-  |e Verfasser  |0 (DE-588)172375525  |4 aut 
700 1 |a Zhao, Guosong  |e Verfasser  |4 aut 
830 0 |a De Gruyter expositions in mathematics  |v 11  |w (DE-604)BV004069300  |9 11 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005393842&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-005393842 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 537f 2001 A 22725
DE-BY-TUM_katkey 599683
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020026599
DE-BY-UBR_call_number 80/SK 370 L693
DE-BY-UBR_katkey 1993557
DE-BY-UBR_location UB Lesesaal Mathematik
DE-BY-UBR_media_number 069007970268
_version_ 1835100203039850498
adam_text Table of Contents Introduction ix Chapter 0 Preliminaries and Basic Structural Aspects §0.1 Affine Spaces 1 §0.2 Euclidean Spaces 10 § 0.3 Differential Geometric Structures of Affine and Euclidean Spaces 12 §0.4 Klein s Erlanger Programme 14 §0.5 Motivation. A Short Sketch of the Euclidean Hypersurface Theory 16 § 0.6 Hypersurfaces in the Equiaffine Space 20 §0.7 Structural Motivation for Further Investigations 20 §0.8 Transversal Fields and Induced Structures 21 § 0.9 Conormal Fields and Induced Structures 24 §0.10 Normalizations 25 §0.11 Non Degenerate Hypersurfaces 26 §0.12 Relative Normalizations 27 §0.13 Gauss Structure Equations for Conormal Fields 27 §0.14 Affine Invariance of the Induced Structures 29 § 0.15 Comparison of Relative Normalizations 31 §0.16 Example. The Euclidean Normalization as Relative Normalization 33 §0.17 The Equiaffine Normalization 33 §0.18 Equiaffine Structure Equations 36 §0.19 The Centroaffine Normalization 36 Chapter 1 Local Equiaffine Hypersurface Theory §1.1 Berwald Blaschke Metric and Structure Equations 40 § 1.2 The Affine Normal and the Fubini Pick Form 43 1.2.1 The Affine Normal 43 1.2.2 The Fubini Pick Form 48 1.2.3 Affine Curvatures 50 1.2.4 Geometric Meaning of the Affine Normal 52 vi Table of Contents § 1.3 The Equiaffine Conormal 56 1.3.1 Properties of the Equiaffine Conormal 56 1.3.2 The Affine Support Function 59 §1.4 Hyperquadrics 60 1.4.1 Hyperquadrics 60 1.4.2 Hypersurfaces with J = 0 66 § 1.5 Integrability Conditions and the Local Fundamental Theorem 71 1.5.1 Relations between the Coefficients 72 1.5.2 The Integrability Conditions 72 1.5.3 The Fundamental Theorem 76 Chapter 2 Affine Hyperspheres §2.1 Definitions and Basic Results for Affine Hyperspheres 85 2.1.1 Definition of Affine Hyperspheres 85 2.1.2 Differential Equations for Affine Hyperspheres 87 2.1.3 A Composition Formula 93 § 2.2 Affine Hyperspheres with Constant Sectional Curvature 95 2.2.1 Examples 95 2.2.2 Local Classification of Two dimensional Affine Spheres with Constant Scalar Curvature 99 2.2.3 Generalization to Higher Dimensions 102 §2.3 Affine Completeness and Euclidean Completeness 110 §2.4 Affine Complete Elliptic Affine Hyperspheres 118 § 2.5 A Differential Inequality on a Complete Riemannian Manifold 121 § 2.6 Estimates of the Ricci Curvatures of Affine Complete Affine Hyperspheres of Parabolic or Hyperbolic Type 126 § 2.7 Classification of Complete Hyperbolic Affine Hyperspheres 130 2.7.1 Euclidean Complete Affine Hyperspheres of Hyperbolic Type 130 2.7.2 Affine Complete Affine Hyperspheres of Hyperbolic Type 136 2.7.3 Proof of the Second Part of the Calabi Conjecture 144 §2.8 Complete Hyperbolic Affine 2 Spheres 151 §2.9 Appendix: Recent Results about Affine Spheres 161 Chapter 3 Rigidity and Uniqueness Theorems § 3.1 Integral Formulas for Affine Hypersurfaces and Their Applications 163 Table of Contents vii 3.1.1 Minkowski s Integral Formulas for Affine Hypersurfaces 164 3.1.2 Characterization of Ellipsoids 165 3.1.3 Some Further Characterizations of Ellipsoids 169 3.1.4 Global Solutions of a Differential Equation of Schrodinger Type 174 3.1.5 Rigidity Theorems for Ovaloids 176 3.1.6 Some Results for Hypersurfaces with Boundary 179 §3.2 The Index Method 188 3.2.1 Fields of Line Elements and Nets 188 3.2.2 Vekua s System of Partial Differential Equations 193 3.2.3 Affine Weingarten Surfaces 195 3.2.4 An Affine Analogue of the Cohn Vossen Theorem 204 Chapter 4 Variational Problems and Affine Maximal Surfaces §4.1 Variational Formulas for Higher Affine Mean Curvatures 208 §4.2 Affine Maximal Surfaces 215 4.2.1 Definitions and Fundamental Results 215 4.2.2 An Affine Analogue of the Weierstrass Representation 220 4.2.3 Computation of AJ 226 4.2.4 The Gauss Map 232 Chapter 5 Geometric Inequalities § 5.1 The Affine Isoperimetric Inequality 237 5.1.1 Steiner Symmetrization 238 5.1.2 A Characterization of Ellipsoids 241 5.1.3 The Affine Isoperimetric Inequality 243 § 5.2 Inequalities for Higher Affine Mean Curvatures 245 5.2.1 Mixed Volumes 245 5.2.2 Integral Inequalities for Curvature Functions 247 5.2.3 Total Centroaffme Area 251 Appendix 1 Basic Concepts from Differential Geometry § Al.l Tensors and Exterior Algebra 253 A 1.1.1 Tensors 253 A 1.1.2 Exterior Algebra 256 viii Table of Contents §A1.2 Differentiable Manifolds 260 Al.2.1 Differentiable Manifolds and Submanifolds 260 A 1.2.2 Tensor Fields on Manifolds 264 Al.2.3 Integration on Manifolds 267 §A1.3 Affine Connections and Riemannian Geometry. Basic Facts 269 A 1.3.1 Affine Connections 269 A 1.3.2 Riemannian Manifolds 274 A 1.3.3 Manifolds of Constant Curvature. Einstein Manifolds 278 A 1.3.4 Exponential Mapping and Completeness 280 §A1.4 Green s Formula 283 Appendix 2 Laplacian Comparison Theorem 285 Bibliography 291 List of Symbols 325 Index 327
any_adam_object 1
author Li, An-Min 1946-
Simon, Udo 1938-
Zhao, Guosong
author_GND (DE-588)113507054
(DE-588)172375525
author_facet Li, An-Min 1946-
Simon, Udo 1938-
Zhao, Guosong
author_role aut
aut
aut
author_sort Li, An-Min 1946-
author_variant a m l aml
u s us
g z gz
building Verbundindex
bvnumber BV008173749
callnumber-first Q - Science
callnumber-label QA670
callnumber-raw QA670
callnumber-search QA670
callnumber-sort QA 3670
callnumber-subject QA - Mathematics
classification_rvk SK 370
classification_tum MAT 517f
ctrlnum (OCoLC)28550056
(DE-599)BVBBV008173749
dewey-full 516.3/62
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.3/62
dewey-search 516.3/62
dewey-sort 3516.3 262
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02530nam a2200625 cb4500</leader><controlfield tag="001">BV008173749</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150916 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">930809s1993 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110127695</subfield><subfield code="9">3-11-012769-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)28550056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008173749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA670</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 517f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53A15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, An-Min</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113507054</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global affine differential geometry of hypersurfaces</subfield><subfield code="c">by An-Min Li ; Udo Simon ; Guosong Zhao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 328 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie différentielle globale</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hypersphère</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hypersurfaces</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inégalité géométrique</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problème variationnel</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rigidité</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypersurfaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Affine Differentialgeometrie</subfield><subfield code="0">(DE-588)4141563-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Affine Differentialgeometrie</subfield><subfield code="0">(DE-588)4141563-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simon, Udo</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172375525</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guosong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV004069300</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=005393842&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005393842</subfield></datafield></record></collection>
id DE-604.BV008173749
illustrated Not Illustrated
indexdate 2024-12-20T09:17:51Z
institution BVB
isbn 3110127695
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-005393842
oclc_num 28550056
open_access_boolean
owner DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-824
DE-29T
DE-12
DE-20
DE-703
DE-384
DE-634
DE-83
DE-11
DE-188
DE-19
DE-BY-UBM
owner_facet DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-824
DE-29T
DE-12
DE-20
DE-703
DE-384
DE-634
DE-83
DE-11
DE-188
DE-19
DE-BY-UBM
physical XIII, 328 S.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher de Gruyter
record_format marc
series De Gruyter expositions in mathematics
series2 De Gruyter expositions in mathematics
spellingShingle Li, An-Min 1946-
Simon, Udo 1938-
Zhao, Guosong
Global affine differential geometry of hypersurfaces
De Gruyter expositions in mathematics
Géométrie différentielle globale ram
Hypersphère Jussieu
Hypersurfaces ram
Inégalité géométrique Jussieu
Problème variationnel Jussieu
Rigidité Jussieu
Global differential geometry
Hypersurfaces
Hyperfläche (DE-588)4161054-4 gnd
Globale Differentialgeometrie (DE-588)4021286-5 gnd
Affine Differentialgeometrie (DE-588)4141563-2 gnd
subject_GND (DE-588)4161054-4
(DE-588)4021286-5
(DE-588)4141563-2
title Global affine differential geometry of hypersurfaces
title_auth Global affine differential geometry of hypersurfaces
title_exact_search Global affine differential geometry of hypersurfaces
title_full Global affine differential geometry of hypersurfaces by An-Min Li ; Udo Simon ; Guosong Zhao
title_fullStr Global affine differential geometry of hypersurfaces by An-Min Li ; Udo Simon ; Guosong Zhao
title_full_unstemmed Global affine differential geometry of hypersurfaces by An-Min Li ; Udo Simon ; Guosong Zhao
title_short Global affine differential geometry of hypersurfaces
title_sort global affine differential geometry of hypersurfaces
topic Géométrie différentielle globale ram
Hypersphère Jussieu
Hypersurfaces ram
Inégalité géométrique Jussieu
Problème variationnel Jussieu
Rigidité Jussieu
Global differential geometry
Hypersurfaces
Hyperfläche (DE-588)4161054-4 gnd
Globale Differentialgeometrie (DE-588)4021286-5 gnd
Affine Differentialgeometrie (DE-588)4141563-2 gnd
topic_facet Géométrie différentielle globale
Hypersphère
Hypersurfaces
Inégalité géométrique
Problème variationnel
Rigidité
Global differential geometry
Hyperfläche
Globale Differentialgeometrie
Affine Differentialgeometrie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005393842&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV004069300
work_keys_str_mv AT lianmin globalaffinedifferentialgeometryofhypersurfaces
AT simonudo globalaffinedifferentialgeometryofhypersurfaces
AT zhaoguosong globalaffinedifferentialgeometryofhypersurfaces
  • Verfügbarkeit

‌

Per Ortsleihe bestellen Per Ortsleihe bestellen Inhaltsverzeichnis
An UBR ausleihen
Ausleihen an der UBR sind mit eigenem Ausweis möglich.
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt