Weiter zum Inhalt
Bibliothekskatalog
  • Temporäre Merkliste: 0 temporär gemerkt (Ihre Merkliste ist voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Erklärvideos
  • Weitere Angebote
    • Anschaffungswunsch
    • Semesterapparat
    • Suchhistorie
    • Fernleihe
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren / Gebühren
    • Persönliche Angaben
    • Suchhistorie
  • Log out
  • Login
  • Medien
  • Aufsätze
Erweitert
  • Nonlinear mechanics, groups an...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach Citavi
  • dauerhaft merken
  • temporär merken Aus der Merkliste entfernen
  • Permalink
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Titel:Nonlinear mechanics, groups and symmetry
Von: by Yu. A. Mitropolsky and A. K. Lopatin
Person: Mitropolʹskij, Jurij Alekseevič
1917-2008
Verfasser
aut
Lopatin, Aleksej K.
Hauptverfassende: Mitropolʹskij, Jurij Alekseevič 1917-2008 (VerfasserIn), Lopatin, Aleksej K. (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Dordrecht u.a. Kluwer 1995
Schriftenreihe:Mathematics and its applications 319
Schlagworte:
Nichtlineare Mechanik
Asymptotische Methode
Störungstheorie
Gruppentheorie
Online-Zugang:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006837272&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Beschreibung:IX, 377 S.
ISBN:079233339X
Internformat

MARC

LEADER 00000nam a2200000 cb4500
001 BV010276567
003 DE-604
005 20041115
007 t|
008 950704s1995 xx |||| 00||| engod
020 |a 079233339X  |9 0-7923-3339-X 
035 |a (OCoLC)246725888 
035 |a (DE-599)BVBBV010276567 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-384  |a DE-19  |a DE-703  |a DE-188 
084 |a SK 520  |0 (DE-625)143244:  |2 rvk 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
100 1 |a Mitropolʹskij, Jurij Alekseevič  |d 1917-2008  |e Verfasser  |0 (DE-588)104890029  |4 aut 
240 1 0 |a Teoretiko-gruppovoj podchod v asimptotičeskich metodach nelinejnoj mechaniki 
245 1 0 |a Nonlinear mechanics, groups and symmetry  |c by Yu. A. Mitropolsky and A. K. Lopatin 
264 1 |a Dordrecht u.a.  |b Kluwer  |c 1995 
300 |a IX, 377 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Mathematics and its applications  |v 319 
650 0 7 |a Nichtlineare Mechanik  |0 (DE-588)4042095-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Asymptotische Methode  |0 (DE-588)4287476-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Störungstheorie  |0 (DE-588)4128420-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Gruppentheorie  |0 (DE-588)4072157-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare Mechanik  |0 (DE-588)4042095-4  |D s 
689 0 1 |a Störungstheorie  |0 (DE-588)4128420-3  |D s 
689 0 2 |a Asymptotische Methode  |0 (DE-588)4287476-2  |D s 
689 0 3 |a Gruppentheorie  |0 (DE-588)4072157-7  |D s 
689 0 |5 DE-604 
700 1 |a Lopatin, Aleksej K.  |e Verfasser  |4 aut 
830 0 |a Mathematics and its applications  |v 319  |w (DE-604)BV008163334  |9 319 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006837272&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
940 1 |n oe 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006837272 

Datensatz im Suchindex

_version_ 1819323893245018112
adam_text Contents Introduction 1 1 Vector Fields, Algebras and Groups Generated by a System of Ordinary Differential Equations and their Properties 13 1.1. The system of differential equations and its generating Lie algebra . 13 1.1.1. Basic definitions 13 1.1.2. Examples 17 1.2. Lie series as the solution of the system of ordinary differential equa¬ tions and its properties. The generating group of the system 18 1.2.1. Basic properties of Lie series 18 1.2.2. Pointwise transformations 25 1.2.3. On a connection between generating Lie algebras of a system and certain groups 28 1.3. The change of variables in a differential system. Carnpbell Hausdorff formula 35 1.3.1. The technique for variable change 35 1.3.2. Variable changes using Lie series. The Lie transformation . . 37 1.4. Lie theory of systems of ordinary differential equations admitting a group of transformations 38 1.4.1. Basic definitions and the theorem on invariance 38 1.4.2. What does the knowledge of the algebra of symmetry of a system give for its integration? 40 1.4.3. Lie s result on the reduction of an arbitrary algebra of the symmetry of a system to finite algebra 42 1.4.4. Examples 44 1.4.5. Connection of above mentioned results on invariance with Lie s theory of extended operators 47 2 Decomposition of Systems of Ordinary Differential Equations 51 2.1. Algebraic reducibility of systems of linear ordinary differential equa¬ tions with variable coefficients 51 2.1.1. Principal definitions and theorems 51 2.1.2. Basic and auxiliary statements 54 2.1.3. The main algorithm. Examples 67 V vi CONTENTS 2.2. A generalized linear method for the decomposition of a differential system to block triangular form 70 2.2.1. Formulation of the problem 70 2.2.2. The Danilevsky s method 71 2.2.3. Method of decomposition by a nilpotent component 76 2.2.4. The generalized linear method 83 2.3. The algebraic reductibility of systems of linear differential equations with variable coefficients, the matrices of which c.omrnutate with their integral 85 2.4. Decomposition of systems of nonlinear differential equations 88 2.4.1. Formulation of the problem 88 2.4.2. Some auxiliary statements 90 2.4.3. The principal theorems 94 2.4.4. Examples 99 2.5. Reduction of the number of variables in the system of ordinary dif¬ ferential equations 101 2.5.1. Formulation of the problem 101 2.5.2. The principal theorems 102 2.5.3. Dynamical motions of a satellite 103 2.6. Algebraically reducible systems 106 2.6.1. Formulation of the problem and principal theorems 106 2.6.2. A group theoretical view to the results 107 2.6.3. Certain mechanical models 109 3 Asymptotic decomposition of systems of ordinary differential equations with a small parameter 115 3.1. The general scheme of the asymptotic decomposition algorithm . . .115 3.1.1. The main algorithm 115 3.1.2. The centralized system and its group theoretical properties . 119 3.1.3. Two approaches in the construction of the centralized system 120 3.2. Basic theorems on the integration of the centralized system 121 3.2.1. Results related to the separation of motions 121 3.2.2. Results related to the separation of variables into fast and slow 125 3.3. Reduction of operator equations to differential equations 129 3.3.1. Reduction of operator equations to the Jacobian systems . . 129 3.3.2. Various approaches to solving the Jacobian systems arrived at via various methods of nonlinear mechanics 131 3.4. Realization of an asymptotic decomposition algorithm in the domain of the existing first integrals of a system of zero approximation . . . 133 3.4.1. Formulation of the problem 133 3.4.2. Construction of the domain Ho(x) 133 3.4.3. Investigation of the asymptotic decomposition algorithm . . . 135 3.5. Substantiation of the asymptotic decomposition algorithm for a fi¬ nite number of approximations 143 3.5.1. Shortened transformations and the centralized system of m approximations 143 CONTENTS vii 3.5.2. Justification of the asymptotic decomposition algorithm bas¬ ing on Poincare s theorem 145 3.6. The asymptotic method of separation of variables by Krylov, Bo goliubov and Mitropolsky (KBM method) and the asymptotic de¬ composition method 151 3.6.1. General remarks 151 3.6.2. Systems of the standard form. The Bogoliubov projector . . 152 3.6.3. Systems of nonlinear mechanics with several fast variables . . 156 4 Asymptotic Decomposition of Almost Linear Systems of Differ¬ ential Equations with Constant Coefficients and Perturbations in the Form of Polynomials 159 4.1. The generating algebras B and 3 of the initial system 159 4.1.1. Passing to the matrix of a simple structure 159 4.1.2. General settings 160 4.1.3. The structure of the operators of the system of zero approx¬ imation 161 4.2. Reduction of the solution of operator equations to a solution of a system of algebraic equations 163 4.2.1. Basic equations 163 4.2.2. Three approaches to the solution of the basic equations . . . 164 4.3. Construction of a centralized system and finding the reducing trans¬ formations 165 4.3.1. The basic algorithm 165 4.3.2. The existence conditions of nonzero projections 167 4.4. The structure of a centralized system. The basic theorems on de¬ composition and separation of motions 168 4.4.1. The basic theorem 168 4.4.2. Separation of variables in the centralized system 169 4.4.3. Some other results 175 4.4.4. A sufficient criterion of decomposability 177 4.5. Models based on Lotka Volterra system 181 4.6. Models based on the Van der Pol system 194 4.7. A model of the point motion on a sphere 208 4.8. The asymptotic decomposition and the normal form methods .... 215 4.8.1. The normal form method 215 4.8.2. Comparison of normal form and asymptotic decomposition methods 216 5 Asymptotic Decomposition of Differential Systems with Small Pa¬ rameter in the Representation Space of Finite dimensional Lie Group 219 5.1. Formulation of the problem 219 5.2. An asymptotic decomposition algorithm in a representation space of a finite dimensional Lie group 222 viii CONTENTS 5.2.1. Group theoretical properties of the system of zero approxi¬ mation 222 5.2.2. The main algorithm. Reduction of operator equations to systems of linear algebraic equations 223 5.2.3. Some results on the separation of variables in a centralized system 228 5.2.4. Advantages of passing from general linear group GL{n) to its subgroup G{Bh) 229 5.3. Models connected with 50(2) 230 5.4. The motion of a point on a sphere (a model of the motion connected with 50(3)) 234 5.5. Dynamical maneuvers of a satellite (perturbed motion on 5 0(2) x 50(3) x 5O(3) x 50(3)) 240 5.6. Almost invariant systems of differential equations with a compact Lie group of invariance 248 5.6.1. Formulation of the problem 248 5.6.2. The main algorithm 250 5.6.3. Examples 255 6 Asymptotic Decomposition of Differential Systems where Zero Approximation has Special Properties 259 6.1. .Systems of zero approximation having a known symmetry algebra . . 259 6.1.1. Formulation of the problem 259 6.1.2. Basic theorems 261 6.1.3. Example 264 6.2. Asymptotic decomposition algorithm when zero approximation is decomposable 267 6.2.1. Basic assumptions about the system of zero approximation . 267 6.2.2. Conditions of decomposability for a perturbed system . . . .268 6.3. Linear systems with constant coefficients and a small parameter . . . 276 6.3.1. Algorithm realization 276 6.3.2. The centralized system is always decomposable 277 6.3.3. The case of decomposability of the zero approximation .... 281 6.3.4. A model of a mechanical system 286 6.4. The general case of the structure of a matrix of zero approximation system 295 6.4.1. Formulation of the problem and realization of the asymptotic decomposition algorithm 295 6.4.2. Basic theorems 298 6.5. Method of local asymptotic decomposition 299 6.5.1. Dynamics of flying apparatus 300 6.5.2. A model of gas dynamics 303 CONTENTS ix 7 Asymptotic Decomposition of Pfaffian Systems with a Small Pa¬ rameter 305 7.1. Reduction of the general problem of integration of a partial differ¬ ential equation system to that of a Pfaffian system 305 7.1.1. The equivalence of the integration problem for a partial dif¬ ferential equation system and that for a Pfaffian system . . . 305 7.1.2. The perturbation problem for a Pfaffian system 309 7.2. Asymptotic decomposition of completely integrable Pfaffian systems with a small parameter 310 7.2.1. Formulation of the problem and the main algorithm 310 7.2.2. Theorems on the integration of the centralized system . . . .313 7.2.3. Justification of the asymptotic decomposition algorithm . . .316 7.2.4. Not completely integrable systems 319 7.3. Searching for integrals of a Pfaffian system in involution 320 7.3.1. The chain of integral elements 320 7.3.2. Theorems on integration of the centralized system 326 7.4. Asymptotic decomposition of a Pfaffian system, which is in involu¬ tion, with a small parameter 329 7.4.1. The reduction of the general problem to the perturbation problem for completely integrable systems 329 7.4.2. Model of a Pfaffian system for a wave equation 331 Appendix 339 A: Lie series and Lie transformation 339 B: The direct product of matrices 342 Bl: Definition 342 B2: Systems of matrix equations 342 C: Conditions for the solvability of systems of linear equations 342 D: Elements of Lie group analysis of differential equations on the basis of the theory of extended operators 345 Dl: One parameter group and its infinitesimal operator 345 D2. Theory of extension 346 Bibliographical Comments 349 References 353 Index 373
any_adam_object 1
author Mitropolʹskij, Jurij Alekseevič 1917-2008
Lopatin, Aleksej K.
author_GND (DE-588)104890029
author_facet Mitropolʹskij, Jurij Alekseevič 1917-2008
Lopatin, Aleksej K.
author_role aut
aut
author_sort Mitropolʹskij, Jurij Alekseevič 1917-2008
author_variant j a m ja jam
a k l ak akl
building Verbundindex
bvnumber BV010276567
classification_rvk SK 520
SK 540
ctrlnum (OCoLC)246725888
(DE-599)BVBBV010276567
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01960nam a2200457 cb4500</leader><controlfield tag="001">BV010276567</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20041115 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950704s1995 xx |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">079233339X</subfield><subfield code="9">0-7923-3339-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246725888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010276567</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitropolʹskij, Jurij Alekseevič</subfield><subfield code="d">1917-2008</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)104890029</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Teoretiko-gruppovoj podchod v asimptotičeskich metodach nelinejnoj mechaniki</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear mechanics, groups and symmetry</subfield><subfield code="c">by Yu. A. Mitropolsky and A. K. Lopatin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht u.a.</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 377 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and its applications</subfield><subfield code="v">319</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Mechanik</subfield><subfield code="0">(DE-588)4042095-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Mechanik</subfield><subfield code="0">(DE-588)4042095-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lopatin, Aleksej K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and its applications</subfield><subfield code="v">319</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">319</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=006837272&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006837272</subfield></datafield></record></collection>
id DE-604.BV010276567
illustrated Not Illustrated
indexdate 2024-12-20T09:51:11Z
institution BVB
isbn 079233339X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006837272
oclc_num 246725888
open_access_boolean
owner DE-12
DE-384
DE-19
DE-BY-UBM
DE-703
DE-188
owner_facet DE-12
DE-384
DE-19
DE-BY-UBM
DE-703
DE-188
physical IX, 377 S.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Kluwer
record_format marc
series Mathematics and its applications
series2 Mathematics and its applications
spellingShingle Mitropolʹskij, Jurij Alekseevič 1917-2008
Lopatin, Aleksej K.
Nonlinear mechanics, groups and symmetry
Mathematics and its applications
Nichtlineare Mechanik (DE-588)4042095-4 gnd
Asymptotische Methode (DE-588)4287476-2 gnd
Störungstheorie (DE-588)4128420-3 gnd
Gruppentheorie (DE-588)4072157-7 gnd
subject_GND (DE-588)4042095-4
(DE-588)4287476-2
(DE-588)4128420-3
(DE-588)4072157-7
title Nonlinear mechanics, groups and symmetry
title_alt Teoretiko-gruppovoj podchod v asimptotičeskich metodach nelinejnoj mechaniki
title_auth Nonlinear mechanics, groups and symmetry
title_exact_search Nonlinear mechanics, groups and symmetry
title_full Nonlinear mechanics, groups and symmetry by Yu. A. Mitropolsky and A. K. Lopatin
title_fullStr Nonlinear mechanics, groups and symmetry by Yu. A. Mitropolsky and A. K. Lopatin
title_full_unstemmed Nonlinear mechanics, groups and symmetry by Yu. A. Mitropolsky and A. K. Lopatin
title_short Nonlinear mechanics, groups and symmetry
title_sort nonlinear mechanics groups and symmetry
topic Nichtlineare Mechanik (DE-588)4042095-4 gnd
Asymptotische Methode (DE-588)4287476-2 gnd
Störungstheorie (DE-588)4128420-3 gnd
Gruppentheorie (DE-588)4072157-7 gnd
topic_facet Nichtlineare Mechanik
Asymptotische Methode
Störungstheorie
Gruppentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006837272&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV008163334
work_keys_str_mv AT mitropolʹskijjurijalekseevic teoretikogruppovojpodchodvasimptoticeskichmetodachnelinejnojmechaniki
AT lopatinaleksejk teoretikogruppovojpodchodvasimptoticeskichmetodachnelinejnojmechaniki
AT mitropolʹskijjurijalekseevic nonlinearmechanicsgroupsandsymmetry
AT lopatinaleksejk nonlinearmechanicsgroupsandsymmetry
  • Verfügbarkeit

‌

Per Fernleihe bestellen Per Fernleihe bestellen Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt