Gespeichert in:
Titel: | Spectral decomposition and Eisenstein series une paraphrase de l'écriture |
---|---|
Weiterer Titel: | Spectral Decomposition & Eisenstein Series |
Von: |
C. Moeglin, J.-L. Waldspurger
|
Person: |
Moeglin, Colette
1953- Verfasser aut Waldspurger, Jean-Loup Sonstige |
Hauptverfasser: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | Cambridge tracts in mathematics
113 |
Schlagworte: | |
Online-Zugang: | https://doi.org/10.1017/CBO9780511470905 https://doi.org/10.1017/CBO9780511470905 https://doi.org/10.1017/CBO9780511470905 https://doi.org/10.1017/CBO9780511470905 |
Zusammenfassung: | The decomposition of the space L2(G(Q)\G(A)), where G is a reductive group defined over Q and A is the ring of adeles of Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. This book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur–Selberg trace formula. To make the book reasonably self-contained, the authors also provide essential background in subjects such as: automorphic forms; Eisenstein series; Eisenstein pseudo-series, and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, the first written using contemporary terminology. It will be welcomed by number theorists, representation theorists and all whose work involves the Langlands program |
Beschreibung: | 1 Online-Ressource (xxvii, 338 Seiten) |
ISBN: | 9780511470905 |
DOI: | 10.1017/CBO9780511470905 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941619 | ||
003 | DE-604 | ||
005 | 20190423 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 xx o|||| 00||| eng d | ||
020 | |a 9780511470905 |c Online |9 978-0-511-47090-5 | ||
024 | 7 | |a 10.1017/CBO9780511470905 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511470905 | ||
035 | |a (OCoLC)849903380 | ||
035 | |a (DE-599)BVBBV043941619 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 515/.243 |2 20 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Moeglin, Colette |d 1953- |e Verfasser |0 (DE-588)111560519 |4 aut | |
245 | 1 | 0 | |a Spectral decomposition and Eisenstein series |b une paraphrase de l'écriture |c C. Moeglin, J.-L. Waldspurger |
246 | 1 | 3 | |a Spectral Decomposition & Eisenstein Series |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 Online-Ressource (xxvii, 338 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 113 | |
505 | 8 | |a I. Hypotheses, automorphic forms, constant terms. I.1. Hypotheses and general notation. I.2. Automorphic forms: growth, constant terms. I.3. Cuspidal components. I.4. Upper bounds as functions of the constant term -- II. Decomposition according to cuspidal data. II. 1. Definitions. II. 2. Calculation of the scalar product of two pseudo-Eisenstein series -- III. Hilbertian operators and automorphic forms. III. 1. Hilbertian operators. III. 2. A decomposition of the space of automorphic forms. III. 3. Cuspidal exponents and square integrable automorphic forms -- IV. Continuation of Eisenstein series. IV. 1. The results. IV. 2. Some preparations. IV. 3. The case of relative rank 1. IV. 4. The general case -- V. Construction of the discrete spectrum via residues. V.1. Generalities and the residue theorem. V.2. Decomposition of the scalar product of two pseudo-Eisenstein series. V.3. Decomposition along the spectrum of the operators [Delta](f) | |
520 | |a The decomposition of the space L2(G(Q)\G(A)), where G is a reductive group defined over Q and A is the ring of adeles of Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. This book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur–Selberg trace formula. To make the book reasonably self-contained, the authors also provide essential background in subjects such as: automorphic forms; Eisenstein series; Eisenstein pseudo-series, and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, the first written using contemporary terminology. It will be welcomed by number theorists, representation theorists and all whose work involves the Langlands program | ||
650 | 4 | |a Eisenstein series | |
650 | 4 | |a Automorphic forms | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Decomposition (Mathematics) | |
650 | 0 | 7 | |a Eisenstein-Reihe |0 (DE-588)4131762-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraldarstellung |0 (DE-588)4182162-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spektraldarstellung |0 (DE-588)4182162-2 |D s |
689 | 0 | 1 | |a Eisenstein-Reihe |0 (DE-588)4131762-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Waldspurger, Jean-Loup |d 1953- |e Sonstige |0 (DE-588)135928125 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-41893-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-07035-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511470905 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029350589 | |
966 | e | |u https://doi.org/10.1017/CBO9780511470905 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470905 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511470905 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-UBR_katkey | 6123404 |
---|---|
_version_ | 1835100673475084290 |
any_adam_object | |
author | Moeglin, Colette 1953- |
author_GND | (DE-588)111560519 (DE-588)135928125 |
author_facet | Moeglin, Colette 1953- |
author_role | aut |
author_sort | Moeglin, Colette 1953- |
author_variant | c m cm |
building | Verbundindex |
bvnumber | BV043941619 |
classification_rvk | SK 620 SK 230 |
collection | ZDB-20-CBO |
contents | I. Hypotheses, automorphic forms, constant terms. I.1. Hypotheses and general notation. I.2. Automorphic forms: growth, constant terms. I.3. Cuspidal components. I.4. Upper bounds as functions of the constant term -- II. Decomposition according to cuspidal data. II. 1. Definitions. II. 2. Calculation of the scalar product of two pseudo-Eisenstein series -- III. Hilbertian operators and automorphic forms. III. 1. Hilbertian operators. III. 2. A decomposition of the space of automorphic forms. III. 3. Cuspidal exponents and square integrable automorphic forms -- IV. Continuation of Eisenstein series. IV. 1. The results. IV. 2. Some preparations. IV. 3. The case of relative rank 1. IV. 4. The general case -- V. Construction of the discrete spectrum via residues. V.1. Generalities and the residue theorem. V.2. Decomposition of the scalar product of two pseudo-Eisenstein series. V.3. Decomposition along the spectrum of the operators [Delta](f) |
ctrlnum | (ZDB-20-CBO)CR9780511470905 (OCoLC)849903380 (DE-599)BVBBV043941619 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511470905 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04276nam a2200565zcb4500</leader><controlfield tag="001">BV043941619</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190423 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511470905</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-47090-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511470905</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511470905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849903380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941619</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moeglin, Colette</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)111560519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral decomposition and Eisenstein series</subfield><subfield code="b">une paraphrase de l'écriture</subfield><subfield code="c">C. Moeglin, J.-L. Waldspurger</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Spectral Decomposition & Eisenstein Series</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvii, 338 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">113</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">I. Hypotheses, automorphic forms, constant terms. I.1. Hypotheses and general notation. I.2. Automorphic forms: growth, constant terms. I.3. Cuspidal components. I.4. Upper bounds as functions of the constant term -- II. Decomposition according to cuspidal data. II. 1. Definitions. II. 2. Calculation of the scalar product of two pseudo-Eisenstein series -- III. Hilbertian operators and automorphic forms. III. 1. Hilbertian operators. III. 2. A decomposition of the space of automorphic forms. III. 3. Cuspidal exponents and square integrable automorphic forms -- IV. Continuation of Eisenstein series. IV. 1. The results. IV. 2. Some preparations. IV. 3. The case of relative rank 1. IV. 4. The general case -- V. Construction of the discrete spectrum via residues. V.1. Generalities and the residue theorem. V.2. Decomposition of the scalar product of two pseudo-Eisenstein series. V.3. Decomposition along the spectrum of the operators [Delta](f)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The decomposition of the space L2(G(Q)\G(A)), where G is a reductive group defined over Q and A is the ring of adeles of Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. This book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur–Selberg trace formula. To make the book reasonably self-contained, the authors also provide essential background in subjects such as: automorphic forms; Eisenstein series; Eisenstein pseudo-series, and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, the first written using contemporary terminology. It will be welcomed by number theorists, representation theorists and all whose work involves the Langlands program</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eisenstein series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphic forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eisenstein-Reihe</subfield><subfield code="0">(DE-588)4131762-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraldarstellung</subfield><subfield code="0">(DE-588)4182162-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spektraldarstellung</subfield><subfield code="0">(DE-588)4182162-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eisenstein-Reihe</subfield><subfield code="0">(DE-588)4131762-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waldspurger, Jean-Loup</subfield><subfield code="d">1953-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135928125</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-41893-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-07035-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511470905</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350589</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470905</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470905</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511470905</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941619 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:49:17Z |
institution | BVB |
isbn | 9780511470905 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350589 |
oclc_num | 849903380 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xxvii, 338 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spellingShingle | Moeglin, Colette 1953- Spectral decomposition and Eisenstein series une paraphrase de l'écriture I. Hypotheses, automorphic forms, constant terms. I.1. Hypotheses and general notation. I.2. Automorphic forms: growth, constant terms. I.3. Cuspidal components. I.4. Upper bounds as functions of the constant term -- II. Decomposition according to cuspidal data. II. 1. Definitions. II. 2. Calculation of the scalar product of two pseudo-Eisenstein series -- III. Hilbertian operators and automorphic forms. III. 1. Hilbertian operators. III. 2. A decomposition of the space of automorphic forms. III. 3. Cuspidal exponents and square integrable automorphic forms -- IV. Continuation of Eisenstein series. IV. 1. The results. IV. 2. Some preparations. IV. 3. The case of relative rank 1. IV. 4. The general case -- V. Construction of the discrete spectrum via residues. V.1. Generalities and the residue theorem. V.2. Decomposition of the scalar product of two pseudo-Eisenstein series. V.3. Decomposition along the spectrum of the operators [Delta](f) Eisenstein series Automorphic forms Spectral theory (Mathematics) Decomposition (Mathematics) Eisenstein-Reihe (DE-588)4131762-2 gnd Spektraldarstellung (DE-588)4182162-2 gnd |
subject_GND | (DE-588)4131762-2 (DE-588)4182162-2 |
title | Spectral decomposition and Eisenstein series une paraphrase de l'écriture |
title_alt | Spectral Decomposition & Eisenstein Series |
title_auth | Spectral decomposition and Eisenstein series une paraphrase de l'écriture |
title_exact_search | Spectral decomposition and Eisenstein series une paraphrase de l'écriture |
title_full | Spectral decomposition and Eisenstein series une paraphrase de l'écriture C. Moeglin, J.-L. Waldspurger |
title_fullStr | Spectral decomposition and Eisenstein series une paraphrase de l'écriture C. Moeglin, J.-L. Waldspurger |
title_full_unstemmed | Spectral decomposition and Eisenstein series une paraphrase de l'écriture C. Moeglin, J.-L. Waldspurger |
title_short | Spectral decomposition and Eisenstein series |
title_sort | spectral decomposition and eisenstein series une paraphrase de l ecriture |
title_sub | une paraphrase de l'écriture |
topic | Eisenstein series Automorphic forms Spectral theory (Mathematics) Decomposition (Mathematics) Eisenstein-Reihe (DE-588)4131762-2 gnd Spektraldarstellung (DE-588)4182162-2 gnd |
topic_facet | Eisenstein series Automorphic forms Spectral theory (Mathematics) Decomposition (Mathematics) Eisenstein-Reihe Spektraldarstellung |
url | https://doi.org/10.1017/CBO9780511470905 |
work_keys_str_mv | AT moeglincolette spectraldecompositionandeisensteinseriesuneparaphrasedelecriture AT waldspurgerjeanloup spectraldecompositionandeisensteinseriesuneparaphrasedelecriture AT moeglincolette spectraldecompositioneisensteinseries AT waldspurgerjeanloup spectraldecompositioneisensteinseries |