Saved in:
Title: | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government |
---|---|
From: |
Scott Burk, Gary D. Miner
|
Person: |
Burk, Scott
ca. 20./21. Jh. Verfasser aut Miner, Gary 1942- |
Main Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
Boca Raton ; London ; New York
CRC Press
2020
|
Edition: | First edition |
Subjects: | |
Online Access: | https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6209045 |
Physical Description: | 1 Online-Ressource (xxxv, 272 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000067200 9780429343988 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441677 | ||
003 | DE-604 | ||
005 | 20240220 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 xx a||| o|||| 00||| eng d | ||
020 | |a 9781000067200 |9 978-1-00-006720-0 | ||
020 | |a 9780429343988 |9 978-0-429-34398-8 | ||
035 | |a (ZDB-30-PQE)EBC6209045 | ||
035 | |a (ZDB-30-PAD)EBC6209045 | ||
035 | |a (ZDB-89-EBL)EBL6209045 | ||
035 | |a (OCoLC)1156022004 | ||
035 | |a (DE-599)BVBBV047441677 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 6.3 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a DAT 001 |2 stub | ||
084 | |a DAT 620 |2 stub | ||
084 | |a DAT 700 |2 stub | ||
100 | 1 | |a Burk, Scott |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1251791255 |4 aut | |
245 | 1 | 0 | |a It's all analytics! |b the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government |c Scott Burk, Gary D. Miner |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2020 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xxxv, 272 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword Number One -- Foreword Number Two -- Foreword Number Three -- Preface -- Endorsements -- Authors -- Chapter 1 You Need This Book -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality: -- Hype, Fear, and Intrigue No 1: -- Hype, Fear, and Intrigue No 2: -- Hype, Fear, and Intrigue No 3: -- Professionals Need This Book -- Introduction -- Technology Keeps Raging, but We Need More Than Technology to Be Successful -- Data and Analytics Explosion -- A Bright Side of the Revolution -- Where Is Someone to Turn for Information? -- The Problem, Too Many Self-Interests: The Need for an Objective View -- There Are Many Other Professional Stories That Are Concerned about Whether Analytics Is Important -- Here Are a Few More Examples -- What This Book Is Not: -- Why This Book? -- Sure, Business, but Why Healthcare, Public Policy, and Business? -- How This Book Is Organized -- References -- Resources for the Avid Learner -- Chapter 2 Building a Successful Program -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- The Hype -- Reality -- The Hype -- Reality -- Introduction -- Culture and Organization - Gaps and Limitations -- Gaps in Analytics Programs -- Characterizing Common Problems -- Don't Confuse Organizational Gaps for Project Gaps -- Justifying a Data-Driven Organization -- Motivations -- Critical Business Events -- Analytics as a Winning Strategy -- Part I - New Programs and Technologies -- Part II - More Traditional Methods of Justification -- Positive Return of Investment -- Scale -- Productivity -- Reliability -- Sustainability -- Designing the Organization for Program Success -- Motivation / Communication and Commitment -- Establish Clear Business Outcomes -- Organization Structure and Design | |
505 | 8 | |a The Organization and Its Goals - Alignment -- Organizational Structure -- Centralized Analytics -- Decentralized or Embedded Analytics -- Multidisciplinary Roles for Analytics -- Data Scientists -- Data Engineers -- Citizen Data Scientists -- Developers -- Business Experts -- Business Leaders -- Project Managers -- Analytics Oversight Committee (AOC) and Governance Committee (Board Report) -- Postscript -- References -- Resources for the Avid Learner -- Chapter 3 Some Fundamentals - Process, Data, and Models -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- Introduction -- Framework for Analytics - Some Fundamentals -- Processes Drive Data -- Models, Methods, and Algorithms -- Models, Models, Models -- Statistical Models -- Rules of Thumb, Heuristic Models -- A Note on Cognition -- Algorithms, Algorithms, Algorithms -- Distinction between Methods That Generate Models -- There Is No Free Lunch -- A Process Methodology for Analytics -- CRISP-DM: The Six Phases: -- Last Considerations -- Data Architecture -- Analytics Architecture -- Postscript -- References -- Resources for the Avid Learner -- Chapter 4 It's All Analytics! -- Preamble -- Overview of Analytics - It's All Analytics -- Analytics of Every Form and Analytics Everywhere -- Introduction -- Analytics Mega List -- Breaking it Down, Categorizing Analytics -- Introduction -- Gartner's Classification -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Process Optimization -- Some Additional Thoughts on Classifying Analytics -- Fundamentals of Analytics - Data Basics -- Introduction -- Four Scales of Measurement -- Data Formats -- Data Stores -- Provisioning Data for Analytics -- Data Sourcing -- Data Quality Assessment and Remediation -- Integrate and Repeat -- Exploratory Data Analysis (EDA) | |
505 | 8 | |a Data Transformations -- Data Reduction -- Postscript -- References -- Resources for the Avid Learner -- Chapter 5 What Are Business Intelligence (BI) and Visual BI? -- Preamble -- Introduction -- Background and Chronology -- Basic (Digital) Reporting -- A View inside the Data Warehouse and Interactive BI -- Beyond the Data Warehouse and Enhanced Interactive Visual BI and More -- Business Activity Monitoring an Alert-Based BI, Version 4.0 -- Strengths and Weaknesses of BI -- Transparency and Single Version of the Truth -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 6 What Are Machine Learning and Data Mining? -- Preamble -- Overview of Machine Learning and Data Mining -- Is There a Difference? -- A (Brief) Historical Perspective of Data Mining and Machine Learning -- What Types of Analytics Are Covered by Machine Learning? -- An Overview of Problem Types and Common Ground -- The BIG Three! -- Regression -- Classification -- Natural Language Processing (NLP) -- Some (of Many) Additional Problem Classes -- Association, Rules and Recommender Systems -- Clustering -- Some Comments on Model Types -- Some Popular Machine Learning Algorithm Classes -- Trees 1.0: Classification and Regression Trees or Partition Trees -- Trees 2.0: Advanced Trees: Boosted Trees and Random Forests, for Classification and Regression -- Regression Model Trees and Cubist Models -- Logistic and Constrained/Penalized (LASSO, Ridge, Elastic Net) Regression -- Multivariate Adaptive Regression Splines -- Support Vector Machines (SVMs) -- Neural Networks in 1000 Flavors -- K-Means and Other Clustering Algorithms -- Directed Acyclic Graph Analytics (Optimization, Social Networks) -- Association Rules -- AutoML (Automated Machine Learning) -- Transparency and Processing Time of Algorithms -- Model Use and Deployment | |
505 | 8 | |a Major Components of the Machine Learning Process -- Advantages and Limitations of Using Machine Learning -- Postscript -- References -- Resources for the Avid Learner -- Chapter 7 AI (Artificial Intelligence) and How It Differs from Machine Learning -- Preamble -- Introduction -- Let Us Outline Two Types of AI Here - Weak AI and Strong AI -- AI Background and Chronology -- Short History of Digital AI -- Resurrection in the 1980s -- Beyond the Second AI Winter -- Deep Learning, Bigger, and New Data -- Next-Generation AI -- Differences of BI, Data Mining, Machine Learning, Statistics vs AI -- Strengths and Weakness -- Some Weaknesses of AI -- AI's Future -- "How 'Rosy' is the FUTURE for AI?" -- Postscript -- References -- Resources for the Avid Learner -- Chapter 8 What Is Data Science? -- Preamble -- Introduction -- Mushing All the Terms - Same Thing? -- Today's Data Science? -- Data Science vs BI and Data Scientist -- Data Science vs Data Engineering vs Citizen Data Scientist -- Backgrounds of Data Analytics Professionals -- Young Professionals' Input on What Makes a Great Data Scientist -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 9 Big Data and Bigger Data, Little Data, Cloud, and Other Data -- Preamble -- Introduction -- Three Popular Forms and Two Divisions of Data -- What Is Big Data? -- Why the Push to Big Data? Why Is Big Data Technology Attractive? -- The Hype of Big Data -- Pivotal Changes in Big Data Technology -- Brief Notes on Cloud -- "Not Big Data" Is Alive and Well and Lessons from the Swamp -- A Brief Note on Subjective and Synthetic Data -- Other Important Data Focuses of Today and Tomorrow -- Data Virtualization (DV) -- Streaming Data -- Events (Event-Driven or Event Data) -- Geospatial -- IoT (Internet of Things) -- High-Performance In-Memory Computing Beyond Spark -- Grid and GPU Computing | |
505 | 8 | |a Near-Memory Computing -- Data Fabric -- Future Careers in Data -- Postscript -- References -- For the Avid Learner -- Chapter 10 Statistics, Causation, and Prescriptive Analytics -- Preamble -- Some Statistical Foundations -- Introduction -- Two Major Divisions of Statistics - Descriptive Statistics and Inferential Statistics -- What Made Statistics Famous? -- Criminal Trials and Hypothesis Testing -- The Scientific Method -- Two Major Paradigms of Statistics -- Bayesian Statistics -- Classical or Frequentist Statistics -- Dividing It Up - Assumption Heavy and Assumption Light Statistics -- Non-Parametric and Distribution Free Statistics (Assumption Light) -- Four Domains in Statistics to Mention -- Statistics in Predictive Analytics -- Design of Experiments (DoE) -- Statistical Process Control (SPC) -- Time Series -- An Ever-Important Reminder -- Statistics Summary -- Advantages of Statistics vs BI, Machine Learning and AI -- Disadvantages of Statistics vs BI, Machine Learning and AI -- Comparison of Data-Driven Paradigms Thus Far -- Business Intelligence (BI) -- Machine Learning and Data Mining -- Artificial Intelligence (AI) -- Statistics -- Predictive Analytics vs Prescriptive Analytics - The Missing Link Is Causation -- Assuming or Establishing Causation -- Ladder of Causation -- Predicting an Increasing Trend - Structural Causal Models and Causal Inference -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 11 Other Disciplines to Dive in Deeper: Computer Science, Management/Decision Science, Operations Research, Engineering (and More) -- Preamble -- Introduction -- Computer Science -- Management Science -- Decision Science -- Operations Research -- Engineering -- Finance and Econometrics -- Simulation, Sensitivity and Scenario Analysis -- Sensitivity Analysis -- Scenario Analysis -- Systems Thinking | |
505 | 8 | |a Postscript | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Miner, Gary |d 1942- |e Verfasser |0 (DE-588)140491813 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Burk, Scott |t It's All Analytics! |d Milton : Productivity Press,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-35968-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-367-49379-0 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032843829 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6209045 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2577356 |
---|---|
_version_ | 1821935654517342208 |
any_adam_object | |
author | Burk, Scott ca. 20./21. Jh Miner, Gary 1942- |
author_GND | (DE-588)1251791255 (DE-588)140491813 |
author_facet | Burk, Scott ca. 20./21. Jh Miner, Gary 1942- |
author_role | aut aut |
author_sort | Burk, Scott ca. 20./21. Jh |
author_variant | s b sb g m gm |
building | Verbundindex |
bvnumber | BV047441677 |
classification_rvk | ST 530 |
classification_tum | DAT 001 DAT 620 DAT 700 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword Number One -- Foreword Number Two -- Foreword Number Three -- Preface -- Endorsements -- Authors -- Chapter 1 You Need This Book -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality: -- Hype, Fear, and Intrigue No 1: -- Hype, Fear, and Intrigue No 2: -- Hype, Fear, and Intrigue No 3: -- Professionals Need This Book -- Introduction -- Technology Keeps Raging, but We Need More Than Technology to Be Successful -- Data and Analytics Explosion -- A Bright Side of the Revolution -- Where Is Someone to Turn for Information? -- The Problem, Too Many Self-Interests: The Need for an Objective View -- There Are Many Other Professional Stories That Are Concerned about Whether Analytics Is Important -- Here Are a Few More Examples -- What This Book Is Not: -- Why This Book? -- Sure, Business, but Why Healthcare, Public Policy, and Business? -- How This Book Is Organized -- References -- Resources for the Avid Learner -- Chapter 2 Building a Successful Program -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- The Hype -- Reality -- The Hype -- Reality -- Introduction -- Culture and Organization - Gaps and Limitations -- Gaps in Analytics Programs -- Characterizing Common Problems -- Don't Confuse Organizational Gaps for Project Gaps -- Justifying a Data-Driven Organization -- Motivations -- Critical Business Events -- Analytics as a Winning Strategy -- Part I - New Programs and Technologies -- Part II - More Traditional Methods of Justification -- Positive Return of Investment -- Scale -- Productivity -- Reliability -- Sustainability -- Designing the Organization for Program Success -- Motivation / Communication and Commitment -- Establish Clear Business Outcomes -- Organization Structure and Design The Organization and Its Goals - Alignment -- Organizational Structure -- Centralized Analytics -- Decentralized or Embedded Analytics -- Multidisciplinary Roles for Analytics -- Data Scientists -- Data Engineers -- Citizen Data Scientists -- Developers -- Business Experts -- Business Leaders -- Project Managers -- Analytics Oversight Committee (AOC) and Governance Committee (Board Report) -- Postscript -- References -- Resources for the Avid Learner -- Chapter 3 Some Fundamentals - Process, Data, and Models -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- Introduction -- Framework for Analytics - Some Fundamentals -- Processes Drive Data -- Models, Methods, and Algorithms -- Models, Models, Models -- Statistical Models -- Rules of Thumb, Heuristic Models -- A Note on Cognition -- Algorithms, Algorithms, Algorithms -- Distinction between Methods That Generate Models -- There Is No Free Lunch -- A Process Methodology for Analytics -- CRISP-DM: The Six Phases: -- Last Considerations -- Data Architecture -- Analytics Architecture -- Postscript -- References -- Resources for the Avid Learner -- Chapter 4 It's All Analytics! -- Preamble -- Overview of Analytics - It's All Analytics -- Analytics of Every Form and Analytics Everywhere -- Introduction -- Analytics Mega List -- Breaking it Down, Categorizing Analytics -- Introduction -- Gartner's Classification -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Process Optimization -- Some Additional Thoughts on Classifying Analytics -- Fundamentals of Analytics - Data Basics -- Introduction -- Four Scales of Measurement -- Data Formats -- Data Stores -- Provisioning Data for Analytics -- Data Sourcing -- Data Quality Assessment and Remediation -- Integrate and Repeat -- Exploratory Data Analysis (EDA) Data Transformations -- Data Reduction -- Postscript -- References -- Resources for the Avid Learner -- Chapter 5 What Are Business Intelligence (BI) and Visual BI? -- Preamble -- Introduction -- Background and Chronology -- Basic (Digital) Reporting -- A View inside the Data Warehouse and Interactive BI -- Beyond the Data Warehouse and Enhanced Interactive Visual BI and More -- Business Activity Monitoring an Alert-Based BI, Version 4.0 -- Strengths and Weaknesses of BI -- Transparency and Single Version of the Truth -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 6 What Are Machine Learning and Data Mining? -- Preamble -- Overview of Machine Learning and Data Mining -- Is There a Difference? -- A (Brief) Historical Perspective of Data Mining and Machine Learning -- What Types of Analytics Are Covered by Machine Learning? -- An Overview of Problem Types and Common Ground -- The BIG Three! -- Regression -- Classification -- Natural Language Processing (NLP) -- Some (of Many) Additional Problem Classes -- Association, Rules and Recommender Systems -- Clustering -- Some Comments on Model Types -- Some Popular Machine Learning Algorithm Classes -- Trees 1.0: Classification and Regression Trees or Partition Trees -- Trees 2.0: Advanced Trees: Boosted Trees and Random Forests, for Classification and Regression -- Regression Model Trees and Cubist Models -- Logistic and Constrained/Penalized (LASSO, Ridge, Elastic Net) Regression -- Multivariate Adaptive Regression Splines -- Support Vector Machines (SVMs) -- Neural Networks in 1000 Flavors -- K-Means and Other Clustering Algorithms -- Directed Acyclic Graph Analytics (Optimization, Social Networks) -- Association Rules -- AutoML (Automated Machine Learning) -- Transparency and Processing Time of Algorithms -- Model Use and Deployment Major Components of the Machine Learning Process -- Advantages and Limitations of Using Machine Learning -- Postscript -- References -- Resources for the Avid Learner -- Chapter 7 AI (Artificial Intelligence) and How It Differs from Machine Learning -- Preamble -- Introduction -- Let Us Outline Two Types of AI Here - Weak AI and Strong AI -- AI Background and Chronology -- Short History of Digital AI -- Resurrection in the 1980s -- Beyond the Second AI Winter -- Deep Learning, Bigger, and New Data -- Next-Generation AI -- Differences of BI, Data Mining, Machine Learning, Statistics vs AI -- Strengths and Weakness -- Some Weaknesses of AI -- AI's Future -- "How 'Rosy' is the FUTURE for AI?" -- Postscript -- References -- Resources for the Avid Learner -- Chapter 8 What Is Data Science? -- Preamble -- Introduction -- Mushing All the Terms - Same Thing? -- Today's Data Science? -- Data Science vs BI and Data Scientist -- Data Science vs Data Engineering vs Citizen Data Scientist -- Backgrounds of Data Analytics Professionals -- Young Professionals' Input on What Makes a Great Data Scientist -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 9 Big Data and Bigger Data, Little Data, Cloud, and Other Data -- Preamble -- Introduction -- Three Popular Forms and Two Divisions of Data -- What Is Big Data? -- Why the Push to Big Data? Why Is Big Data Technology Attractive? -- The Hype of Big Data -- Pivotal Changes in Big Data Technology -- Brief Notes on Cloud -- "Not Big Data" Is Alive and Well and Lessons from the Swamp -- A Brief Note on Subjective and Synthetic Data -- Other Important Data Focuses of Today and Tomorrow -- Data Virtualization (DV) -- Streaming Data -- Events (Event-Driven or Event Data) -- Geospatial -- IoT (Internet of Things) -- High-Performance In-Memory Computing Beyond Spark -- Grid and GPU Computing Near-Memory Computing -- Data Fabric -- Future Careers in Data -- Postscript -- References -- For the Avid Learner -- Chapter 10 Statistics, Causation, and Prescriptive Analytics -- Preamble -- Some Statistical Foundations -- Introduction -- Two Major Divisions of Statistics - Descriptive Statistics and Inferential Statistics -- What Made Statistics Famous? -- Criminal Trials and Hypothesis Testing -- The Scientific Method -- Two Major Paradigms of Statistics -- Bayesian Statistics -- Classical or Frequentist Statistics -- Dividing It Up - Assumption Heavy and Assumption Light Statistics -- Non-Parametric and Distribution Free Statistics (Assumption Light) -- Four Domains in Statistics to Mention -- Statistics in Predictive Analytics -- Design of Experiments (DoE) -- Statistical Process Control (SPC) -- Time Series -- An Ever-Important Reminder -- Statistics Summary -- Advantages of Statistics vs BI, Machine Learning and AI -- Disadvantages of Statistics vs BI, Machine Learning and AI -- Comparison of Data-Driven Paradigms Thus Far -- Business Intelligence (BI) -- Machine Learning and Data Mining -- Artificial Intelligence (AI) -- Statistics -- Predictive Analytics vs Prescriptive Analytics - The Missing Link Is Causation -- Assuming or Establishing Causation -- Ladder of Causation -- Predicting an Increasing Trend - Structural Causal Models and Causal Inference -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 11 Other Disciplines to Dive in Deeper: Computer Science, Management/Decision Science, Operations Research, Engineering (and More) -- Preamble -- Introduction -- Computer Science -- Management Science -- Decision Science -- Operations Research -- Engineering -- Finance and Econometrics -- Simulation, Sensitivity and Scenario Analysis -- Sensitivity Analysis -- Scenario Analysis -- Systems Thinking Postscript |
ctrlnum | (ZDB-30-PQE)EBC6209045 (ZDB-30-PAD)EBC6209045 (ZDB-89-EBL)EBL6209045 (OCoLC)1156022004 (DE-599)BVBBV047441677 |
dewey-full | 6.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 6.3 |
dewey-search | 6.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11677nam a2200613zc 4500</leader><controlfield tag="001">BV047441677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000067200</subfield><subfield code="9">978-1-00-006720-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429343988</subfield><subfield code="9">978-0-429-34398-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6209045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6209045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6209045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1156022004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">6.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 001</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 620</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 700</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burk, Scott</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1251791255</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">It's all analytics!</subfield><subfield code="b">the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government</subfield><subfield code="c">Scott Burk, Gary D. Miner</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxv, 272 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword Number One -- Foreword Number Two -- Foreword Number Three -- Preface -- Endorsements -- Authors -- Chapter 1 You Need This Book -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality: -- Hype, Fear, and Intrigue No 1: -- Hype, Fear, and Intrigue No 2: -- Hype, Fear, and Intrigue No 3: -- Professionals Need This Book -- Introduction -- Technology Keeps Raging, but We Need More Than Technology to Be Successful -- Data and Analytics Explosion -- A Bright Side of the Revolution -- Where Is Someone to Turn for Information? -- The Problem, Too Many Self-Interests: The Need for an Objective View -- There Are Many Other Professional Stories That Are Concerned about Whether Analytics Is Important -- Here Are a Few More Examples -- What This Book Is Not: -- Why This Book? -- Sure, Business, but Why Healthcare, Public Policy, and Business? -- How This Book Is Organized -- References -- Resources for the Avid Learner -- Chapter 2 Building a Successful Program -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- The Hype -- Reality -- The Hype -- Reality -- Introduction -- Culture and Organization - Gaps and Limitations -- Gaps in Analytics Programs -- Characterizing Common Problems -- Don't Confuse Organizational Gaps for Project Gaps -- Justifying a Data-Driven Organization -- Motivations -- Critical Business Events -- Analytics as a Winning Strategy -- Part I - New Programs and Technologies -- Part II - More Traditional Methods of Justification -- Positive Return of Investment -- Scale -- Productivity -- Reliability -- Sustainability -- Designing the Organization for Program Success -- Motivation / Communication and Commitment -- Establish Clear Business Outcomes -- Organization Structure and Design</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Organization and Its Goals - Alignment -- Organizational Structure -- Centralized Analytics -- Decentralized or Embedded Analytics -- Multidisciplinary Roles for Analytics -- Data Scientists -- Data Engineers -- Citizen Data Scientists -- Developers -- Business Experts -- Business Leaders -- Project Managers -- Analytics Oversight Committee (AOC) and Governance Committee (Board Report) -- Postscript -- References -- Resources for the Avid Learner -- Chapter 3 Some Fundamentals - Process, Data, and Models -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- Introduction -- Framework for Analytics - Some Fundamentals -- Processes Drive Data -- Models, Methods, and Algorithms -- Models, Models, Models -- Statistical Models -- Rules of Thumb, Heuristic Models -- A Note on Cognition -- Algorithms, Algorithms, Algorithms -- Distinction between Methods That Generate Models -- There Is No Free Lunch -- A Process Methodology for Analytics -- CRISP-DM: The Six Phases: -- Last Considerations -- Data Architecture -- Analytics Architecture -- Postscript -- References -- Resources for the Avid Learner -- Chapter 4 It's All Analytics! -- Preamble -- Overview of Analytics - It's All Analytics -- Analytics of Every Form and Analytics Everywhere -- Introduction -- Analytics Mega List -- Breaking it Down, Categorizing Analytics -- Introduction -- Gartner's Classification -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Process Optimization -- Some Additional Thoughts on Classifying Analytics -- Fundamentals of Analytics - Data Basics -- Introduction -- Four Scales of Measurement -- Data Formats -- Data Stores -- Provisioning Data for Analytics -- Data Sourcing -- Data Quality Assessment and Remediation -- Integrate and Repeat -- Exploratory Data Analysis (EDA)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data Transformations -- Data Reduction -- Postscript -- References -- Resources for the Avid Learner -- Chapter 5 What Are Business Intelligence (BI) and Visual BI? -- Preamble -- Introduction -- Background and Chronology -- Basic (Digital) Reporting -- A View inside the Data Warehouse and Interactive BI -- Beyond the Data Warehouse and Enhanced Interactive Visual BI and More -- Business Activity Monitoring an Alert-Based BI, Version 4.0 -- Strengths and Weaknesses of BI -- Transparency and Single Version of the Truth -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 6 What Are Machine Learning and Data Mining? -- Preamble -- Overview of Machine Learning and Data Mining -- Is There a Difference? -- A (Brief) Historical Perspective of Data Mining and Machine Learning -- What Types of Analytics Are Covered by Machine Learning? -- An Overview of Problem Types and Common Ground -- The BIG Three! -- Regression -- Classification -- Natural Language Processing (NLP) -- Some (of Many) Additional Problem Classes -- Association, Rules and Recommender Systems -- Clustering -- Some Comments on Model Types -- Some Popular Machine Learning Algorithm Classes -- Trees 1.0: Classification and Regression Trees or Partition Trees -- Trees 2.0: Advanced Trees: Boosted Trees and Random Forests, for Classification and Regression -- Regression Model Trees and Cubist Models -- Logistic and Constrained/Penalized (LASSO, Ridge, Elastic Net) Regression -- Multivariate Adaptive Regression Splines -- Support Vector Machines (SVMs) -- Neural Networks in 1000 Flavors -- K-Means and Other Clustering Algorithms -- Directed Acyclic Graph Analytics (Optimization, Social Networks) -- Association Rules -- AutoML (Automated Machine Learning) -- Transparency and Processing Time of Algorithms -- Model Use and Deployment</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Major Components of the Machine Learning Process -- Advantages and Limitations of Using Machine Learning -- Postscript -- References -- Resources for the Avid Learner -- Chapter 7 AI (Artificial Intelligence) and How It Differs from Machine Learning -- Preamble -- Introduction -- Let Us Outline Two Types of AI Here - Weak AI and Strong AI -- AI Background and Chronology -- Short History of Digital AI -- Resurrection in the 1980s -- Beyond the Second AI Winter -- Deep Learning, Bigger, and New Data -- Next-Generation AI -- Differences of BI, Data Mining, Machine Learning, Statistics vs AI -- Strengths and Weakness -- Some Weaknesses of AI -- AI's Future -- "How 'Rosy' is the FUTURE for AI?" -- Postscript -- References -- Resources for the Avid Learner -- Chapter 8 What Is Data Science? -- Preamble -- Introduction -- Mushing All the Terms - Same Thing? -- Today's Data Science? -- Data Science vs BI and Data Scientist -- Data Science vs Data Engineering vs Citizen Data Scientist -- Backgrounds of Data Analytics Professionals -- Young Professionals' Input on What Makes a Great Data Scientist -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 9 Big Data and Bigger Data, Little Data, Cloud, and Other Data -- Preamble -- Introduction -- Three Popular Forms and Two Divisions of Data -- What Is Big Data? -- Why the Push to Big Data? Why Is Big Data Technology Attractive? -- The Hype of Big Data -- Pivotal Changes in Big Data Technology -- Brief Notes on Cloud -- "Not Big Data" Is Alive and Well and Lessons from the Swamp -- A Brief Note on Subjective and Synthetic Data -- Other Important Data Focuses of Today and Tomorrow -- Data Virtualization (DV) -- Streaming Data -- Events (Event-Driven or Event Data) -- Geospatial -- IoT (Internet of Things) -- High-Performance In-Memory Computing Beyond Spark -- Grid and GPU Computing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Near-Memory Computing -- Data Fabric -- Future Careers in Data -- Postscript -- References -- For the Avid Learner -- Chapter 10 Statistics, Causation, and Prescriptive Analytics -- Preamble -- Some Statistical Foundations -- Introduction -- Two Major Divisions of Statistics - Descriptive Statistics and Inferential Statistics -- What Made Statistics Famous? -- Criminal Trials and Hypothesis Testing -- The Scientific Method -- Two Major Paradigms of Statistics -- Bayesian Statistics -- Classical or Frequentist Statistics -- Dividing It Up - Assumption Heavy and Assumption Light Statistics -- Non-Parametric and Distribution Free Statistics (Assumption Light) -- Four Domains in Statistics to Mention -- Statistics in Predictive Analytics -- Design of Experiments (DoE) -- Statistical Process Control (SPC) -- Time Series -- An Ever-Important Reminder -- Statistics Summary -- Advantages of Statistics vs BI, Machine Learning and AI -- Disadvantages of Statistics vs BI, Machine Learning and AI -- Comparison of Data-Driven Paradigms Thus Far -- Business Intelligence (BI) -- Machine Learning and Data Mining -- Artificial Intelligence (AI) -- Statistics -- Predictive Analytics vs Prescriptive Analytics - The Missing Link Is Causation -- Assuming or Establishing Causation -- Ladder of Causation -- Predicting an Increasing Trend - Structural Causal Models and Causal Inference -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 11 Other Disciplines to Dive in Deeper: Computer Science, Management/Decision Science, Operations Research, Engineering (and More) -- Preamble -- Introduction -- Computer Science -- Management Science -- Decision Science -- Operations Research -- Engineering -- Finance and Econometrics -- Simulation, Sensitivity and Scenario Analysis -- Sensitivity Analysis -- Scenario Analysis -- Systems Thinking</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Postscript</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miner, Gary</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140491813</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Burk, Scott</subfield><subfield code="t">It's All Analytics!</subfield><subfield code="d">Milton : Productivity Press,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-35968-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-367-49379-0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843829</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6209045</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441677 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:19:40Z |
institution | BVB |
isbn | 9781000067200 9780429343988 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843829 |
oclc_num | 1156022004 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxxv, 272 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press |
record_format | marc |
spellingShingle | Burk, Scott ca. 20./21. Jh Miner, Gary 1942- It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword Number One -- Foreword Number Two -- Foreword Number Three -- Preface -- Endorsements -- Authors -- Chapter 1 You Need This Book -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality: -- Hype, Fear, and Intrigue No 1: -- Hype, Fear, and Intrigue No 2: -- Hype, Fear, and Intrigue No 3: -- Professionals Need This Book -- Introduction -- Technology Keeps Raging, but We Need More Than Technology to Be Successful -- Data and Analytics Explosion -- A Bright Side of the Revolution -- Where Is Someone to Turn for Information? -- The Problem, Too Many Self-Interests: The Need for an Objective View -- There Are Many Other Professional Stories That Are Concerned about Whether Analytics Is Important -- Here Are a Few More Examples -- What This Book Is Not: -- Why This Book? -- Sure, Business, but Why Healthcare, Public Policy, and Business? -- How This Book Is Organized -- References -- Resources for the Avid Learner -- Chapter 2 Building a Successful Program -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- The Hype -- Reality -- The Hype -- Reality -- Introduction -- Culture and Organization - Gaps and Limitations -- Gaps in Analytics Programs -- Characterizing Common Problems -- Don't Confuse Organizational Gaps for Project Gaps -- Justifying a Data-Driven Organization -- Motivations -- Critical Business Events -- Analytics as a Winning Strategy -- Part I - New Programs and Technologies -- Part II - More Traditional Methods of Justification -- Positive Return of Investment -- Scale -- Productivity -- Reliability -- Sustainability -- Designing the Organization for Program Success -- Motivation / Communication and Commitment -- Establish Clear Business Outcomes -- Organization Structure and Design The Organization and Its Goals - Alignment -- Organizational Structure -- Centralized Analytics -- Decentralized or Embedded Analytics -- Multidisciplinary Roles for Analytics -- Data Scientists -- Data Engineers -- Citizen Data Scientists -- Developers -- Business Experts -- Business Leaders -- Project Managers -- Analytics Oversight Committee (AOC) and Governance Committee (Board Report) -- Postscript -- References -- Resources for the Avid Learner -- Chapter 3 Some Fundamentals - Process, Data, and Models -- Preamble -- The Hip, the Hype, the Fears, the Intrigue, and the Reality -- The Hype -- Reality -- Introduction -- Framework for Analytics - Some Fundamentals -- Processes Drive Data -- Models, Methods, and Algorithms -- Models, Models, Models -- Statistical Models -- Rules of Thumb, Heuristic Models -- A Note on Cognition -- Algorithms, Algorithms, Algorithms -- Distinction between Methods That Generate Models -- There Is No Free Lunch -- A Process Methodology for Analytics -- CRISP-DM: The Six Phases: -- Last Considerations -- Data Architecture -- Analytics Architecture -- Postscript -- References -- Resources for the Avid Learner -- Chapter 4 It's All Analytics! -- Preamble -- Overview of Analytics - It's All Analytics -- Analytics of Every Form and Analytics Everywhere -- Introduction -- Analytics Mega List -- Breaking it Down, Categorizing Analytics -- Introduction -- Gartner's Classification -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Process Optimization -- Some Additional Thoughts on Classifying Analytics -- Fundamentals of Analytics - Data Basics -- Introduction -- Four Scales of Measurement -- Data Formats -- Data Stores -- Provisioning Data for Analytics -- Data Sourcing -- Data Quality Assessment and Remediation -- Integrate and Repeat -- Exploratory Data Analysis (EDA) Data Transformations -- Data Reduction -- Postscript -- References -- Resources for the Avid Learner -- Chapter 5 What Are Business Intelligence (BI) and Visual BI? -- Preamble -- Introduction -- Background and Chronology -- Basic (Digital) Reporting -- A View inside the Data Warehouse and Interactive BI -- Beyond the Data Warehouse and Enhanced Interactive Visual BI and More -- Business Activity Monitoring an Alert-Based BI, Version 4.0 -- Strengths and Weaknesses of BI -- Transparency and Single Version of the Truth -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 6 What Are Machine Learning and Data Mining? -- Preamble -- Overview of Machine Learning and Data Mining -- Is There a Difference? -- A (Brief) Historical Perspective of Data Mining and Machine Learning -- What Types of Analytics Are Covered by Machine Learning? -- An Overview of Problem Types and Common Ground -- The BIG Three! -- Regression -- Classification -- Natural Language Processing (NLP) -- Some (of Many) Additional Problem Classes -- Association, Rules and Recommender Systems -- Clustering -- Some Comments on Model Types -- Some Popular Machine Learning Algorithm Classes -- Trees 1.0: Classification and Regression Trees or Partition Trees -- Trees 2.0: Advanced Trees: Boosted Trees and Random Forests, for Classification and Regression -- Regression Model Trees and Cubist Models -- Logistic and Constrained/Penalized (LASSO, Ridge, Elastic Net) Regression -- Multivariate Adaptive Regression Splines -- Support Vector Machines (SVMs) -- Neural Networks in 1000 Flavors -- K-Means and Other Clustering Algorithms -- Directed Acyclic Graph Analytics (Optimization, Social Networks) -- Association Rules -- AutoML (Automated Machine Learning) -- Transparency and Processing Time of Algorithms -- Model Use and Deployment Major Components of the Machine Learning Process -- Advantages and Limitations of Using Machine Learning -- Postscript -- References -- Resources for the Avid Learner -- Chapter 7 AI (Artificial Intelligence) and How It Differs from Machine Learning -- Preamble -- Introduction -- Let Us Outline Two Types of AI Here - Weak AI and Strong AI -- AI Background and Chronology -- Short History of Digital AI -- Resurrection in the 1980s -- Beyond the Second AI Winter -- Deep Learning, Bigger, and New Data -- Next-Generation AI -- Differences of BI, Data Mining, Machine Learning, Statistics vs AI -- Strengths and Weakness -- Some Weaknesses of AI -- AI's Future -- "How 'Rosy' is the FUTURE for AI?" -- Postscript -- References -- Resources for the Avid Learner -- Chapter 8 What Is Data Science? -- Preamble -- Introduction -- Mushing All the Terms - Same Thing? -- Today's Data Science? -- Data Science vs BI and Data Scientist -- Data Science vs Data Engineering vs Citizen Data Scientist -- Backgrounds of Data Analytics Professionals -- Young Professionals' Input on What Makes a Great Data Scientist -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 9 Big Data and Bigger Data, Little Data, Cloud, and Other Data -- Preamble -- Introduction -- Three Popular Forms and Two Divisions of Data -- What Is Big Data? -- Why the Push to Big Data? Why Is Big Data Technology Attractive? -- The Hype of Big Data -- Pivotal Changes in Big Data Technology -- Brief Notes on Cloud -- "Not Big Data" Is Alive and Well and Lessons from the Swamp -- A Brief Note on Subjective and Synthetic Data -- Other Important Data Focuses of Today and Tomorrow -- Data Virtualization (DV) -- Streaming Data -- Events (Event-Driven or Event Data) -- Geospatial -- IoT (Internet of Things) -- High-Performance In-Memory Computing Beyond Spark -- Grid and GPU Computing Near-Memory Computing -- Data Fabric -- Future Careers in Data -- Postscript -- References -- For the Avid Learner -- Chapter 10 Statistics, Causation, and Prescriptive Analytics -- Preamble -- Some Statistical Foundations -- Introduction -- Two Major Divisions of Statistics - Descriptive Statistics and Inferential Statistics -- What Made Statistics Famous? -- Criminal Trials and Hypothesis Testing -- The Scientific Method -- Two Major Paradigms of Statistics -- Bayesian Statistics -- Classical or Frequentist Statistics -- Dividing It Up - Assumption Heavy and Assumption Light Statistics -- Non-Parametric and Distribution Free Statistics (Assumption Light) -- Four Domains in Statistics to Mention -- Statistics in Predictive Analytics -- Design of Experiments (DoE) -- Statistical Process Control (SPC) -- Time Series -- An Ever-Important Reminder -- Statistics Summary -- Advantages of Statistics vs BI, Machine Learning and AI -- Disadvantages of Statistics vs BI, Machine Learning and AI -- Comparison of Data-Driven Paradigms Thus Far -- Business Intelligence (BI) -- Machine Learning and Data Mining -- Artificial Intelligence (AI) -- Statistics -- Predictive Analytics vs Prescriptive Analytics - The Missing Link Is Causation -- Assuming or Establishing Causation -- Ladder of Causation -- Predicting an Increasing Trend - Structural Causal Models and Causal Inference -- Summary -- Postscript -- References -- Resources for the Avid Learner -- Chapter 11 Other Disciplines to Dive in Deeper: Computer Science, Management/Decision Science, Operations Research, Engineering (and More) -- Preamble -- Introduction -- Computer Science -- Management Science -- Decision Science -- Operations Research -- Engineering -- Finance and Econometrics -- Simulation, Sensitivity and Scenario Analysis -- Sensitivity Analysis -- Scenario Analysis -- Systems Thinking Postscript Artificial intelligence Data Science (DE-588)1140936166 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)1140936166 (DE-588)4193754-5 (DE-588)4033447-8 |
title | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government |
title_auth | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government |
title_exact_search | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government |
title_full | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government Scott Burk, Gary D. Miner |
title_fullStr | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government Scott Burk, Gary D. Miner |
title_full_unstemmed | It's all analytics! the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government Scott Burk, Gary D. Miner |
title_short | It's all analytics! |
title_sort | it s all analytics the foundations of al big data and data science landscape for professionals in healthcare business and government |
title_sub | the foundations of Al, big data, and data science landscape for professionals in healthcare, business, and government |
topic | Artificial intelligence Data Science (DE-588)1140936166 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Artificial intelligence Data Science Maschinelles Lernen Künstliche Intelligenz |
work_keys_str_mv | AT burkscott itsallanalyticsthefoundationsofalbigdataanddatasciencelandscapeforprofessionalsinhealthcarebusinessandgovernment AT minergary itsallanalyticsthefoundationsofalbigdataanddatasciencelandscapeforprofessionalsinhealthcarebusinessandgovernment |